Too Many AI Researchers Ignore Real-World Problems


If the community feels that aiming to solve high-impact real-world problems with machine learning is of limited significance, then what are we trying to achieve?

The goal of artificial intelligence (pdf) is to push forward the frontier of machine intelligence. In the field of machine learning, a novel development usually means a new algorithm or procedure, or—in the case of deep learning—a new network architecture. As others have pointed out, this hyperfocus on novel methods leads to a scourge of papers that report marginal or incremental improvements on benchmark data sets and exhibit flawed scholarship (pdf) as researchers race to top the leaderboard.

To quote a classic paper titled “Machine Learning that Matters” (pdf), by NASA computer scientist Kiri Wagstaff: “Much of current machine learning research has lost its connection to problems of import to the larger world of science and society.” The same year that Wagstaff published her paper, a convolutional neural network called AlexNet won a high-profile competition for image recognition centered on the popular ImageNet data set, leading to an explosion of interest in deep learning. Unfortunately, the disconnect she described appears to have grown even worse since then.

Read More at MIT Technology Review

Read the rest at MIT Technology Review