How the shape of deep learning—and the fate of the tech industry—went up for sale in Harrah’s Room 731, on the shores of Lake Tahoe.
The idea of a neural network dated back to the 1950s, but the early pioneers had never gotten it working as well as they’d hoped. By the new millennium, most researchers had given up on the idea, convinced it was a technological dead end and bewildered by the 50-year-old conceit that these mathematical systems somehow mimicked the human brain. When submitting research papers to academic journals, those who still explored the technology would often disguise it as something else, replacing the words “neural network” with language less likely to offend their fellow scientists.
Hinton remained one of the few who believed it would one day fulfill its promise, delivering machines that could not only recognize objects but identify spoken words, understand natural language, carry on a conversation, and maybe even solve problems humans couldn’t solve on their own, providing new and more incisive ways of exploring the mysteries of biology, medicine, geology, and other sciences. It was an eccentric stance even inside his own university, which spent years denying his standing request to hire another professor who could work alongside him in this long and winding struggle to build machines that learned on their own. “One crazy person working on this was enough,” he imagined their thinking went. But with a nine-page paper that Hinton and his students unveiled in the fall of 2012, detailing their breakthrough, they announced to the world that neural networks were indeed as powerful as Hinton had long claimed they would be.
Read More at Wired
Read the rest at Wired