Studying Spontaneous Synchronisation


Fireflies, heart cells, clocks, and power grids all do it—they can spontaneously sync up, sending signals out in unison. For centuries, scientists have been perplexed by this self-organizing behavior, coming up with theories and experiments that make up the science of sync.

But despite progress being made in the field, mysteries still persist—in particular how networks of completely identical elements can fall out of sync. Now, in a new study in the March 8 issue of the journal Science, Caltech researchers have shown experimentally how a simple network of identical synchronized nanomachines can give rise to out-of-sync, complex states.

Imagine a line of Rockette dancers: When they are all kicking at the same time, they are in sync. One of the complex states observed to arise from the simple network would be akin to the Rockette dancers kicking their legs “out of phase” with each other, where every other dancer is kicking a leg up, while the dancers in between have just finished a kick.

The findings experimentally demonstrate that even simple networks can lead to complexity, and this knowledge, in turn, may ultimately lead to new tools for controlling those networks. For example, by better understanding how heart cells or power grids display complexity in seemingly uniform networks, researchers may be able to develop new tools for pushing those networks back into rhythm.

“We want to learn how we can just tickle, or gently push, a system in the right direction to set it back into a synced state,” says Michael L. Roukes, the Frank J. Roshek Professor of Physics, Applied Physics, and Bioengineering at Caltech, and principal investigator of the new Science study. “This could perhaps engender a form of new, less harsh defibrillators, for example, for shocking the heart back into rhythm.”

Read More at Phys Org

Read the rest at Phys Org