For decades, Katalin Karikó’s work into mRNA therapeutics was overlooked by her colleagues. Now it’s at the heart of the two leading coronavirus vaccines.
n 1995, Katalin Karikó was at her lowest ebb. A biochemist at the University of Pennsylvania (UPenn), Karikó had dedicated much of the previous two decades to finding a way to turn one of the most fundamental building blocks of life, mRNA, into a whole new category of therapeutics.
More often than not, Karikó found herself hitting dead ends. Numerous grant applications were rejected, and an attempt to raise funding from venture capitalists in New York to form a spin-off company had proved to be a fruitless endeavour. ”They initially promised to give us money, but then they never returned my phone calls,” she says.
By the mid 1990s, Karikó’s bosses at UPenn had run out of patience. Frustrated with the lack of funding she was generating for her research, they offered the scientist a bleak choice: leave or be demoted. It was a demeaning prospect for someone who had once been on the path to a full professorship. For Karikó’s dreams of using mRNA to create new vaccines and drugs for many chronic illnesses, it seemed to be the end of the road.
Thirty four years earlier, the discovery of mRNA had been announced amidst a clamour of scientific excitement in the summer of 1961. For more than a decade, researchers in the US and Europe had been attempting to unravel exactly how DNA is involved in the creation of proteins – the long strings of amino acids that are vital to the growth and functioning of all life forms.
Read More at Wired
Read the rest at Wired