Fake Humans Herald a New Age in AI

Firms like Datagen offer an alternative to the expensive, time-consuming process of gathering real-world data. They will make it for you.

Once viewed as less desirable than real data, synthetic data is now seen by some as a panacea. Real data is messy and riddled with bias. New data privacy regulations make it hard to collect. By contrast, synthetic data is pristine and can be used to build more diverse data sets. You can produce perfectly labeled faces, say, of different ages, shapes, and ethnicities to build a face-detection system that works across populations.

But synthetic data has its limitations. If it fails to reflect reality, it could end up producing even worse AI than messy, biased real-world data—or it could simply inherit the same problems. “What I don’t want to do is give the thumbs up to this paradigm and say, ‘Oh, this will solve so many problems,’” says Cathy O’Neil, a data scientist and founder of the algorithmic auditing firm ORCAA. “Because it will also ignore a lot of things.”

Read More at MIT Technology Review

Read the rest at MIT Technology Review