At the level of the tiny, biology is all about engineering. That’s why nanotechnology can rebuild medicine from within.
Thanks to modern physics, we have finally started to discover how nature uses complexity to create the layers that compose our reality, from the Higgs boson to the behaviour of a flock of birds. The rules of the transformation from simple to complex, which then emerge in simpler behaviours again, are measurable, and can be modelled with mathematics. While biology is immensely more complicated than rubber (we are very far from explaining consciousness or emotion with maths!) nothing stands in the way of physicists trying to test the limits of our understanding of reality, and imagining what can be done with that knowledge.
One emerging field that exemplifies this transformation of science is ‘protein nanotechnology’, where nanotechnologists use proteins to design and construct microstructures and nanostructures, thereby imitating life. Proteins are the building blocks of life. In nature, they result from the careful and deterministic folding of molecular strings (polymers) consisting of combinations of 20 different units (amino acids). They can take on any imaginable shape and function at the nanoscale. In fact, we still don’t know how many different proteins are in our bodies (perhaps it is unknowable), since our cells could have the capacity to create and modify proteins as and when they are needed. Proteins work as light detectors in our eyes, electrical switches in our neurons, nanowalkers in our muscles, and rotary nanomotors to catalyse chemical reactions. They are responsible for detecting and reacting to the signals, forces and information from the environment in which an organism resides, and also for creating the structures that allow movement, the extraction of energy from food or the destruction of pathogens. No human-made artificial nanotechnology can dream of such capacities, but we can try to learn how life does it.
Read More at Aeon
Read the rest at Aeon