Stanford scientists are exploring whether gene-editing technology can be used to fight pandemics. But so far, they have just one piece of a larger puzzle.
On February 19, Tim Abbott, a PhD candidate at Stanford University’s Bioengineering Department, checked the results of an experiment that he was running as a part of a team using the gene-manipulating Crispr technology to fight coronavirus. Abbott was working out of the lab of Stanley Qi, a pioneer developing Crispr tools that can mess with cancer cells and the like to fight diseases. Using an approach the lab called PAC-MAN (Prophylactic Antiviral Crispr in huMAN cells), the idea was to attack the coronavirus by directing a Crispr torpedo at it, attacking the virus’s genetic makeup that allows it to penetrate human cells and then use the cell’s machinery to self-replicate.
In this particular experiment, he had introduced the lab’s Crispr-based system for finding and destroying SARS-Cov 2 (what scientists call the new coronavirus) into a solution containing an inert synthesized fragment of that virus. Like all Crispr systems, this one was composed of two parts: an enzyme and a strand of so-called “guide RNA.” The RNA directs the enzyme, in this case, Cas-13d, to latch onto specific spots in the coronavirus’s genome where it then makes a series of cuts. You can think of it like a pair of scissors programmed to scan a cookbook and chop up only the page containing the recipe for SARS-Cov-2.
After Abbott analyzed the data, he called over Marie La Russa, a research scientist managing the project, to verify what he’d seen. The coronavirus-targeted Crispr had reduced the amount of virus in the solution by 90 percent. If effectively delivered, this kill rate, they theorized, might be enough to stop the disease in a human.
Read More at Wired
Read the rest at Wired